Stability of Linear Systems

<u>Stability of</u> <u>systems in the</u> <u>time domain</u>	Stability using Characteristic equation & Routh – Hurwitz Criterion	Stability using Liapunov function	<u>Stability using</u> <u>Liapunov</u> <u>function</u>	
				Objective type questions:

<u>WEBSITE</u> takes you to start page after you have read this chapter.

Start page has links to other chapters.

Problem 3.1: Stability of systems in the time domain

Fig.1 shows a system with state-variable feedback,

where

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -20 & -6 & 0 \end{pmatrix}$$
$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} , \quad \mathbf{C} = \begin{pmatrix} 3 & 1 & 0 \end{pmatrix}$$

- (i) Determine the open loop transfer function, Y(s)/U(s), and show that it represents an unstable process.
- (ii) Show that the system with state variable feedback is represented by

$$d\mathbf{x}/dt = \mathbf{A_f x} + \mathbf{K_1 Br}$$

where $A_f = \mathbf{A} - \mathbf{B}K_1 \mathbf{K}_2$.

Note that K_1 is a scalar quantity and K_2 is a row vector.

(iii) Determine the gain K_1 and the state variable feedback row vector K_2 such that the desired closed loop transfer function, which makes the overall system stable, is given by

$$Y(s)/R(s) = 40(s+3)/[s^3+12s^2+62s+120].$$

Solution:

(i)

 $Y(s)/u(s) = (s+3)/[s^3+0s^2+6s+30] = (s+3)/(s+2)(s^2-2s+10)$

Use Routh-Hurwitz criterion to show that the system is unstable

(ii)

It can be shown that $A_f = A - BK_1K_2$

(iii)

From the denominator of the closed loop transfer function,

$$\mathbf{A_{f}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 120 & -62 & -12 \end{pmatrix}$$
$$\mathbf{B}\mathbf{K}_{1 \, \mathrm{K2}} = \mathbf{A} - \mathbf{A_{f}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 100 & 56 & 12 \end{pmatrix}$$

A comparison of the numerator gives $K_1 = 40$

Hence $\mathbf{K}_2 = \begin{pmatrix} 2.5 & 1.4 & 0.3 \end{pmatrix}$

<u>TOP</u>

Problem 3.2:Stability using Characteristic equation & Routh – Hurwitz Criterion

The spread of an epidemic disease in a population is represented by the following equations:

$$\begin{bmatrix} \frac{d\mathbf{x}_{1}}{dt} \\ \frac{d\mathbf{x}_{2}}{dt} \\ \frac{d\mathbf{x}_{3}}{dt} \end{bmatrix} = \begin{pmatrix} \boldsymbol{\alpha} & -\boldsymbol{\beta} & \boldsymbol{0} \\ \boldsymbol{\beta} & -\boldsymbol{\gamma} & \boldsymbol{0} \\ \boldsymbol{\alpha} & \boldsymbol{\gamma} & \boldsymbol{0} \end{pmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \end{bmatrix} + \begin{pmatrix} \mathbf{f} & \boldsymbol{0} \\ \boldsymbol{0} & \mathbf{1} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \begin{bmatrix} \mathbf{u}_{1}(t) \\ \mathbf{u}_{2}(t) \\ \mathbf{u}_{3}(t) \end{bmatrix}$$

The population is made up of three groups as follows:

 x_1 = group of people susceptible to the epidemic disease

 $x_2 =$ group infected with the disease

 x_3 = group removed from x_1 due to immunization, death or isolation from x_1

 x_3 is dependent on x_1 and x_2 , and does not affect x_1 and x_2 .

 $u_1(t)$ = rate at which new susceptibles are added to the population

 u_2 (t) = rate at which new infected people are added to the population.

For a closed population, $u_1(t) = u_2(t) = 0$.

The equilibrium point for this system, $x_1 = x_2 = 0$, is the point to which the system settles to the rest condition and is obtained by setting dx/dt = 0.

Determine the conditions of stability of this system for the epidemic disease to be eliminated from the population.

Hint: Use the characteristic equation of the system and the Routh -Hurwitz criterion

Solution:

The characteristic eqn is obtained from:

det (sI –A) = 0 $s^{3} + (\alpha + \gamma) s^{2} + (\alpha \gamma + \beta^{2}) s = 0$

Routh array

s ³	1	$+(\alpha\gamma+\beta^2)$	
s ²	(α+γ)	0	
S	$(\alpha\gamma+\beta^2)$	0	
s ⁰	0		

System is stable when $(\alpha + \gamma) > 0$ and $(\alpha \gamma + \beta^2) > 0$

If these conditions are satisfied, the epidemic is eliminated from the population.

TOP

Problem 3.3: Stability using Liapunov function

- (a) Summarize the concepts of stability for the following situations:
 - i At least one of the system poles is in the right-half s=plane
 - ii At least one of the system poles are repeated on the imaginary axis
 - iii All poles on the imaginary axis are simple and none of these poles are present in the input
 - iv All the system poles are inside the left-half of the s-plane
 - v At least one of the system poles on the imaginary axis is present in the form of a pole in the input.
- (b) The differential equation of a second- order system is

 $d^{2}e/dt^{2} + k de/dt + e = 0, k > 0.$

Using the state variables $x_1 = e$ and $x^2 = de/dt$, examine the stability of the system by choosing the Liapunov function $V=x_1^2+x_2^2$.

Solution:

(a)

i	unstable
••	. 11

- ii unstable
- iii non-asymptotically stable

iv asymptotically stable

v instability due to resonance

(b) dx1/dt = x2

dx2/dt = -kx2-x1

 $V = x1^2 + x2^2$

 $dV/dt = 2x1dx1/dt + 2x2dx2/dt = 2x1x2 + 2x2(-kx2-x1) = -2kx2^2$. This is negative definite. Hence,

the system is stable.

TOP

Problem 3.4: Stability using Liapunov function

- (a) What is the main theme and the main advantage of the Liapunov's method osf stability analysis.
- (b) The defining equations of a second-order autonomous system are:

$$dx_1/dt = x_2$$

$$dx_2/dt = -K_1 x_1 - K_2 x_2.$$

Investigate the stability of the system by Liapunov's method using the scalar function:

 $V = x_1^2 + x_2^2$

Solution:

(b) v is + definite V (0) =0 V(x) is greater than zero for all x not=0 W= dV/dt = (delV/delx1) dx1/dt +delV/delx2.dx2/dt = 2x1dx1/dt + zx2dx2/dt= 2x1x2 + 2x2(-k2x2-k1x1)= [2x1(1-k1)-2k2x2] x2For k1=1 and k2 greater than o, W= dV/dt =- $2k2x2^{2}$

<u>TOP</u>

Objective type questions:

(i) A system with the following characteristic equation

$$s^{5} + 2s^{4} + 2s^{3} + 4s^{2} + 11s + 10 = 0$$

is

- (a) stable
- (b) unstable with two roots lying in the right half of the s-plane
- (c) unstable with one root lying in the right half of the s-plane

Ans: (b)

(ii) Which of the following systems, whose characteristic equations are given below, is stable?

(a) $s^{2}+2s+3=0$ (b) $s^{4}+2s^{2}+3s+4=0$ (c) $s^{2}-2s+3=0$

Ans: (a)

(iii) A system is called absolutely stable if any oscillations set up in the system are

- (a) self-sustaining and tend to last indefinitely
- (b) eventually damped out
- (c) not enough to change the parameters of the system

Ans: (b)

(iv) For the Routh -Hurwitz array:

S ³	1	100
\mathbf{S}^2	4	500
\mathbf{S}^1	-25	0
\mathbf{S}^{0}	500	0

the number of roots in the right-half s-plane is equal to

(a) one

(b) two

(c) three

(d)four

Ans: (a)

(v) Which one of the following systems whose characteristic equations are given below is stable?

a.
$$f(s) = s^5 + s^4 + 3s^3 + 9s^2 + 16s + 10$$

b. $f(s) = s^6 + 3s^5 + 5s^4 9s^3 + 8s^2 + 6s + 4$
c. $f(s) = s^4 + 2s^3 + 3s^2 + 6s + K$
d. $f(s) = s^6 + s^5 + 3s^4 + 2s^3 + 11s^2 + 9s + 9s^4$

(vi) Which one of the following statements is <u>not</u> true?

(a) Routh criterion tells us whether or not there are positive roots in a polynomial equation without actually solving it.

(b) Routh criterion applies to polynomials with only a finite number of terms.

(c) Routh criterion gives information about absolute stability as well as relative stability.

(d) Routh criterion gives information only about the absolute stability.

Ans: (c)

(vii) Which one of the systems having the following characteristic equations is stable?

(a) $s^3 + s^2 + 2s + 24 = 0$

(b) $s^3+2s^2+4s+9=0$

- (c) $s^4 + 5s^3 + 20s^2 + 40s + 50 = 0$
- (d) $5s^6 + 8s^5 + 12s^4 + 20s^3 + 100s^2 + 150s + 200 = 0$

Ans: ©

(viii) Which of the following systems is stable?

(a) $as^4 + bs^2 + cs + d = 0$ (b) $as^2 + bs + c = 0$ (c) $as^2 - bs + c = 0$ (d) $-as^2 + bs - c = 0$

Ans: (b)

(ix) The open loop transfer function of a system is

The system will be

(a) stable

(b) unstable

(c) conditionally stable ,becomes unstable at high gain

(d) conditionally stable, becomes unstable if gain is too low

Ans: (c)

<u>TOP</u>