Design and Compensation of Control Systems

		<u>Objective</u>
		<u>Type</u>
		Questions:

<u>WEBSITE</u> takes you to start page after you have read this chapter. Start page has links to other chapters.

Objective Type Questions:

(i) Which one of the following statements is true?

Phase lead net work is used

- (a) when fast transient response is desired.
- (b) when error constants are specified
- (c) when system bandwidth is to be decreased.

Ans: (a)

- (ii) Which one of the following statements is <u>not</u> true?
 - (a)The phase lead network increases the phase margin of the system and thus provides additional stability
 - (b) When the design specifications include an error constant, the design of a phase lead network is more readily accomplished on the Bode diagram.
 - (c) When an error constant is not specified but the settling time and overshoot for a step input are specified, the design of a phase lead network is more readily carried out on the s-plane.
 - (d) Phase lead compensation decreases the system bandwidth, whereas the phase lag compensation increases the system bandwidth.

Ans: (d)

(iii)Which one of the following compensators is used to increase the damping of a pair of complex roots that are severely underdamped:
(a) phase-lag
(b) phase-lead
(c) phase lag-lead
(d) any one of the above
Ans: (b)

- (iv) The time domain method of compensation uses the following performance specifications:
 - (a) Steady-state error coefficients, phase margin and crossover frequency
 - (b) Steady-state error coefficients, location of closed loop dominant poles, and root sensitivity
 - (c) Integral squared error

Ans: (c)

- (v) The time domain method of compensation uses the following performance specifications:
 - (a) Integral squared error
 - (b) Steady-state error coefficients, phase margin and crossover frequency
 - (c) Steady-state error coefficients, location of closed loop dominant poles, and root sensitivity

Ans: (a)

- (vi) It is desirable to avoid the use of the differentiator in control system design, because
 - (a) it is not economical
 - (b) its size is big
 - (c) it develops noise and will saturate the amplifier

Ans: (c)

- (vii) In practise, inductance is not fabricated to realize a lag network.
 - (a) True
 - (b) False.

Ans: (a)

(viii) The following compensator increases the damping of a pair of complex roots that are severely under-damped.

- (a) phase-lag
- (b) phase-lead
- (c) phase-lag-lead
- (d) none of the above.

Ans: (d)

- (ix) The following performance specifications are used in the time domain method of compensation.
 - (a) Integral squared error
 - (b) Steady-state error coefficients, phase margin and crossover frequency
 - (c) Steady-state error coefficients, location of closed loop dominant poles, and root sensitivity
 - (d) Desired closed-loop transfer function, and sensitivity of poles to parameter variations.
 - (e)

Ans : (a)

- (x) Which one of the following statements is <u>not</u>rue?
 - (a) A phase-lag compensation network <u>decreases</u> the system bandwidth and <u>slows down</u> the transient response.
 - (b) A phase-lag network <u>reduces</u> the steady-state error and <u>suppresses</u> high frequency noise.
 - (c) A phase-lead network <u>increases</u> the bandwidth and is used to obtain fast transient response.
 - (d) A phase-lead network <u>decreases</u> the bandwidth and <u>slows down</u> the transient response.

Ans: (d)

 $(xi\)$ Match List E containing A,B,C $\,$ time functions with List F containing $\,$ Laplace transforms in the following Table.

List E	List F
A	$x(t)=1-e^{-at}$
I	$\mathbf{x}(\mathbf{s}) = \mathbf{\omega}/[(\mathbf{s}+\mathbf{a})^2 + \mathbf{\omega}^2]$
В	$x(t) = e^{-at} \sin \omega t$
II	$\omega n^2/(s^2 + 2\xi \omega n s + \omega n^2)$
С	$x(t) = \underline{\omega_n} e^{-j\omega_n t} \underline{\sin \omega_n} \sqrt{(1-\xi^2) \cdot t / \sqrt{(1-\xi^2)}}. ;$
	ξ<1

III $x(s)=a/(s(s+a))$

The correct matching is

- (a) AIII BII CI
- (b)AI BI ICIII
- (c) AIII BI CII
- (d)AI BIICIII

Ans: (c)

(xii)Match List E with List F given below.

List E		List F	
A	Analogue controller	I	Are high performance controllers and are combinations of analogue & digital controllers.
В	Digital controller	II	Represent the variables in the equations by continuous physical quantities and can be designed that will serve as nondecision making controllers
С	Hybrid controller	III	Operate only on numbers and are currently being used for the solution of optimal operation of industrial plants.

The correct matching is

- (a) AII BIII CI
- (b) AI BII CIII
- (c) AIII BII CI
- (d)AI BIII CII

Ans (a)

- (xiii) A phase lead compensating network
 - (a) decreases the system bandwidth
 - (b) speeds up dynamic response
 - (c) reduces the steady-state error

(d) slows down transient response.

Ans: (b)

- (xiv) A phase lag compensating network
 - a. decreases the system bandwidth
 - b. increases susceptibility to noise
 - c. increases gain at higher frequencies
 - d. is <u>not</u> applicable when phase decreases rapidly near the crossover frequency.

Ans: (a)

TOP